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Toward a Quality-Aware Online Pricing Mechanism
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Abstract—Fingerprinting localization systems are outstanding
for its convenient deployment, where a major challenge is the high
cost for collecting a huge number of received signal strength fin-
gerprints. Mobile crowdsensing (MCS) paradigm is cost-effective
for large-scale data collection; however, a quality-aware data pric-
ing mechanism dedicated to MCSed fingerprints accommodating
practical application situations including budget constraints and
online data submission is still unavailable. In this paper, we present
a data pricing scheme dedicated to MCSed fingerprints by enhanc-
ing the online learning technique. We first reveal the principle of
fingerprints quality assessment for accurate localization. Based on
the principle, we design corresponding loss and regret function,
which is able to reflect values of the fingerprints with respect to
localization accuracy. We then present an online pricing scheme
for MCSed data, which results in that the worker’s payoff is a
random variable following an optimal probability density function
leading to the minimum expected regret. Furthermore, we extend
our scheme to application scenarios with different budget settings,
where the pricing strategies for the scenarios of regret minimization
with fixed budget and budget minimization for certain fingerprints
quality level are investigated. Experimental results are presented
to verify our theoretical analysis.

Index Terms—Data acquisition, reliability estimation.

I. INTRODUCTION

THE past decade has witnessed flourishing advances of in-
door localization systems based on wireless techniques [1],

where the received signal strength (RSS) fingerprinting based
methodology has been widely adopted due to the convenient
deployability [1], [3], [4], [12], [13], [21]. The fingerprinting
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based indoor localization system has two phases: In the offline
phase, the site surveyor observes the RSS of Wi-Fi access points
(APs) termed as RSS fingerprints at pre-determined reference
points, and submits the fingerprints and the location information
of these reference points to the localization server’s database; in
the online phase, a user in need of localization service could sub-
mit the observed fingerprints to the server, which then returns
the location with the stored fingerprints match the submitted
fingerprints best as the estimated location of the user.

The site survey in the offline phase requires substantial ef-
forts, which is hardly accomplished by any single entity. The
recent advances of fingerprinting localization systems utilize
mobile crowdsensing (MCS) paradigm to collect fingerprints
[4], [7], [10]–[14], [29]. With mobile crowdsensing, individuals
with commodity mobile devices collectively contribute sensed
fingerprints, where the location of the MCS workers during
the offline phase is estimated by the inertial measurement unit
(IMU) of the mobile device [13], [14], [29]. As the location of
the worker estimated by IMU data is inaccurate, the MCSed
fingerprints are usually not from the location as the worker
claims, which leads to localization errors in the online phase of
localization.

Efforts have been made to evaluate crowdsensed data qual-
ity [18], allocate crowdsensing tasks to appropriate workers
[19], [20] and design incentive mechanisms considering the es-
timated data quality [17], [21], [23]–[25]; however, the proposed
methods for general application scenarios are unable to distin-
guish high-quality fingerprints for accurate indoor localization.
Moreover, how fingerprints should be priced according to the
estimated quality in an online manner is still unknown to the
best of our knowledge.

In this paper, we present a quality-aware online pricing
scheme for MCSed fingerprints, which not only leverages the
essence of fingerprinting localization to evaluate quality of fin-
gerprints, but also enhances the online learning technique to
accommodate different budget settings in practice. Our contri-
butions are as following.

First, we propose an effective quality-assessment mechanism
dedicated to quality evaluation of MCSed RSS fingerprints for
accurate indoor localization. With fingerprinting based local-
ization approach, the distribution of the RSS at each location
�r is used to construct an one-to-one mapping from the RSS
sample space to the physical space. A point on the mean sur-
face of the RSS sample space �μ(�r) corresponds to a location
in the physical space �r. The data noise occurs in the process
of MCSing fingerprints: if the worker associates the observed
fingerprints with inaccurate location information, then the �μ(�r)
deviates from the true value and becomes �μ(�r′). Our strategy
for RSS data quality assessment is to measure the deviation of
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the MCSed data from �μ(�r) if the worker claims the data are ob-
served at �r. In particular, we design a loss function based on the
essence of the indoor localization, which reflects the difference
between the MCSed RSS and a predicted true value of �μ(�r).
Although the real value of �μ(�r) is unknown, we can still the-
oretically prove that the function achieves the minimum when
the predicted value equals �μ(�r).

Second, we design an online pricing scheme for MCSed fin-
gerprints by enhancing the online learning technique. We formu-
late the pricing problem into an optimization problem, where the
objective is to find the optimal probability distribution function
(PDF) for pricing. In contrast to most of work about incentive
mechanism design resulting in a constant price for the MCSed
data, the price of the data under our scheme is a random vari-
able following the optimal PDF. We theoretically prove that the
data obtained in this way present least deviation from the true
value �μ(�r) with respect to each Wi-Fi access point (AP), which
presents the most accurate localization performance.

Third, we extend our data pricing strategy so that it can be
applied to scenarios with different budget settings. The first
scenario assumes that the buyer wants to purchase the high-
quality data as many as possible with constrained budget; the
second scenario assumes to purchase the amount of data that
can achieve a certain quality level with as least cost as possible.
A straightforward problem formulation for the second scenario
requires optimizing a cumulative distribution function (CDF),
which is extremely difficult. Our strategy to resolve the prob-
lem is to first simplify the problem into a simple version and
substitute the result into the original version, then we optimize
the substituted parameters to find the final solution.

The remainder of the paper are organized as follows:
Section II presents related work. Section III describes the
system model based on which our work is developed.
Section IV shows how to evaluate quality of wireless fin-
gerprints. Section V presents the quality-aware online pricing
mechanism based on the quality of wireless fingerprints. Sec-
tion VI presents the enhanced data pricing mechanism with
budget constraints. Section VII shows the experimental results,
and Section VIII presents conclusion remarks.

II. RELATED WORK

Indoor Localization with Mobile Crowdsensing (MCS):
MCS paradigm has been applied to fingerprinting based indoor
localization systems in recent years. Wu et al. propose LiFS sys-
tem, which leverages crowdsourcing to avoid the conventional
site survey process [27], [28]. Shen et al. present a crowdsourc-
ing based system Walkie-Markie [29] to generate indoor path-
way maps from the user’s contributed data. Luo et al. propose
a self-calibrating participatory indoor localization system [13],
which requires no prior knowledge about the building and user
intervention including the floor planning. A fundamental study
on fingerprinting localization with crowdsourcing approach is
presented in [4], which provides a probabilistic model to exam-
ine the reliability of the estimated locations. The study sheds
some light on the essence of the localization approach, which
provides some inspiration to our work in this paper.

The work mentioned above presents novel ideas about how to
utilize MCSed data in localization systems for specific purposes;
however, details about how the MCSed data can be obtained are
not mentioned. Moreover, designing appropriate mechanisms
to obtain the MCSed is non-trivial, where many practical is-
sues need to be considered such as the limited budget for data

purchase and the method to pick out high-quality data from the
entire data set.

Quality-Aware Incentive Mechanism Design for MCS:
Many incentive mechanisms are proposed to motivate individ-
uals to participate in the MCS activities, where an important
issue is how to evaluate the MCSed data that are usually with
considerable noise. Zhang et al. propose an incentive mecha-
nism for labeling systems with the workers’ expertise and the
system’s budget constraints considered [30]. Jin et al. introduce
the quality of information (QoI) as the metric to evaluate the
quality of sensory data [23]. Tham et al. take timeliness of data
into consideration of quality [31], where it is assumed that the
quality of contributed data will go downhill with time. Kawajiri
et al. provide a framework aiming to level up the quality rather
than the size of data directly considering the monetary consump-
tion [18].

The data quality evaluation methods used in the work men-
tioned above are for general purpose, where the essence of in-
door localization is not incorporated into the mechanism design.
Wen et al. propose a quality-driven auction scheme for MCS
system and tailor the mechanism for indoor localization appli-
cation [21]; however, the tailored scheme relies on experiments
on human’s sense of locations, which introduces unpredictable
factors. Zhao et al. design an online incentive mechanism to
deal with the practical issue that the worker submits their data
one-by-one in a random order, instead of in batch as assumed
in other work [32]. While efforts have been made to deal with
issues of MCS systems in an ad hoc manner, a systematical
study of the MCS considering both the data quality evaluation
and the practical application scenario is still unavailable.

Online Learning Mechanisms: The pricing mechanism pro-
posed in this paper utilizes the idea of online learning [34], which
is a natural approach for the practical online data submission
scenario. Zinkevich proposes an effective algorithm General-
ized Infinitesimal Gradient Ascent (GIGA), which presents a
general form of online optimization algorithm [35]. The frame-
work is then extended for a general data acquiring problem [26].
In particular, it models a general situation that a learner with a
limited budget purchases data from agents coming in an online
manner, and the learner needs to propose a hypothesis and a
price in each round to obtain the data. The main contribution
in [26] is its introduction of budget constraint into the online
learning framework; however, the good in the purchase issue
is not specified and the quality of the good is assumed to be
known. This generalization of the problem brings much con-
venience in designing key components of the approach such as
loss and regret function, which actually is the major challenge
for application of online learning technique to practical applica-
tion scenario. Our work in this paper proposes a design of online
learning scheme for MCSed data pricing for indoor localization,
which sheds light on practical use of online learning techniques.

III. SYSTEM MODEL

This section presents the system model in our work. We sum-
marize main notations in the paper in Table I for the convenience
of readers.

MCS System Model: Consider a MCS system for finger-
prints collection with three kinds of entities, MCS workers, pur-
chase platform and buyers. The buyer is purchasing fingerprints
for a classic fingerprinting based localization system, where the
knowledge of the indoor space is perfectly known, including
the map, the locations of reference points, and the Service Set
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TABLE I
NOTATION TABLE

Section Symbol Definition

IV �r Location in the physical space
�μ(�r) Mean value of RSS fingerprints at �r
S Two dimensional Cartesian space
Y Normalized Gaussian additive noise
σ Amplitude of noise

P(�r) Observed value of RSS fingerprints
�δ Maximum estimation error of IMU

Plow , Phigh Boundary of E in 1-D sample space
Ferror�r

Probability of localization error
N Size of data sequence

V Pt Value of submitted RSS fingerprint at t
Z Sampled data space
ht Hypothesis of RSS value at t
H Hypothesis space

�(ht , Pt ), �(ht ) Loss function
η Learning rate
ct Worker’s cost
πt Buyer’s price
M Upper bound of data price
B Total budget
T Size of online data sequence
R Regret function
L Risk function

VI β , λ, μ Parameters in optimization
Gt (c) Cumulative distribution of cost

qt Probability of purchasing data at t
L Lagrangian function

Identifiers (SSIDs) of Wi-Fi APs available. The buyer issues the
request of RSS fingerprints at the target indoor space to the plat-
form, which then assigns the task to registered MCS workers
that are roughly around the area. The chosen workers contin-
uously submitting the current location and corresponding RSS
fingerprints observed to the platform in an opportunistic sensing
manner [12]–[14], [29], where the location of the worker is esti-
mated with dead reckoning by utilizing the inertial measurement
unit (IMU) of the worker’s mobile device such as accelerometer,
magnetometer and gyroscope [13], [29].

The worker’s mobile device installs an agent programm such
as an APP that is dedicated to perform the opportunistic sensing
and interact with the purchasing platform. The agent checks the
percentage of resource in the device the MCS task occupies, and
calculates the cost of the job. The agent representing the worker
also decides if the buyer’s offered price is worth of the efforts,
where the worker’s expectation of taking MCS jobs also can be
set to the agent as configuration parameters. If the agent decides
not to make the deal, the data submitted to the platform will not
be authorized to be exposed to the buyer. We acknowledge the
challenge for appropriately designing the agent program, but
our work in this paper focuses on how the quality-aware pricing
mechanism should be designed for the platform.

It is worth mentioning that the crowd workers are only able
to roughly estimate their own locations with the IMU data, and
such estimations are very limited not only in accuracy but also
in availability. The IMU data based location estimation schemes
will incur considerable cumulative errors; some scheme relies
on special features in the environment such as the dramatic
geomagnetic change near to the server room to calibrate the cu-
mulative errors [15], but such features are not always available
anywhere. The existing Wi-Fi signals could also help estimate

the user’s location information as in [13], [29]; however, such
schemes could possibly work well only in certain indoor en-
vironments such as hallways, because it requires long-enough
space to observe the signal change as the landmark. The work
mentioned above partially utilizes the data from IMUs to im-
prove the performance of the indoor localization, or to provide
a coarse-grained indoor map. Although not able to provide nor-
mal indoor localization services, the roughly estimated location
information along with the corresponding fingerprints observed
can be a useful source of crowdsensed RSS fingerprints.

Fingerprinting Localization Model: The target indoor
space S covered by the localization system can be regarded
as a two-dimensional Cartesian space with S ⊂ R2. We use
�r = (x, y) to denote a location in S. We adopt a general model
for radio propagation as in [4], where the RSS can be observed
at �r with respect to a given AP is

P(�r) = μ(�r) + σY, (1)

where μ(�r) represents how the mean of RSS readings vary
with respect to locations, Y is the normalized Gaussian additive
noise with Y ∼ N (0, 1) and σ is the amplitude of the noise.
This means that the RSS can be observed at �r has a fixed but
unknown mean value μ(�r).

The radio propagation model is essentially a generalized
model from the LNPL model [1], [14], which itself has been
widely adopted by the industrial standardization organizations
[38], [39]. Such a modeling approach with the Gaussian distri-
bution assumption is validated by a number of work on indoor
localization [3], [6], [14]; moreover, our experimental results
with the EVARILOS testbed data [40] also support such mod-
eling [5].

According to the analysis in [4], a point on the mean surface
of the RSS sample space �μ(�r) corresponds to a location in the
physical space �r, which is the basic principle of fingerprinting
localization. However, the RSS readings observed at a location
�r can be impacted by the IMU error, thus the observed μ(�r)
could deviate from the true value of the mean of the RSS read-
ings and actually means μ(�r′), which could result in that the
user supposed to be localized at �r is estimated at �r′. This is the
root cause of inaccurate location estimation of MCS based fin-
gerprints collection approach. Another important information
indicated by the fingerprinting localization model is that the
closer the reported fingerprint is to the true value of μ(�r), the
higher quality the fingerprint has.

Online Learning Model: We formulate the quality-aware
pricing mechanism design issue under the online learning frame-
work. The reported fingerprints from MCS workers form a data
space Z . Since the unavailability of the true value of μ(�r) de-
noted by μ∗(�r), we could only make the hypothesis of μ∗(�r),
and all hypotheses of the value form a hypothesis space H. The
fingerprint submitted at time point t for a location is denoted
by Pt ∈ Z . According to Pt and all such data submitted before
time point t, we have a hypothesis of μ(�r) at time point t, which
is denoted by ht ∈ H. In the following, we focus on the situation
that the submitted data are for a fixed location, and we use μ∗ to
denote the true value of the mean of fingerprints for simplicity
of presentation. Then the difference between Pt and ht is termed
as the loss function �(ht, Pt) : H×Z → R. Our goal is to find
the final hypothesis h that is the average over all yielded ht , so
that the difference between h and μ∗ is minimized.

The challenge is that we have no idea about μ∗, and the classic
online learning technique as described above is only able to
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Fig. 1. Fingerprinting error.

minimize the total loss, which is the sum of �(h, Pt) over all t.
However, even if the the total loss is minimized, it is unable to
guarantee that the the gap between h and μ∗ is minimized; our
work in this paper provides a smart design of the loss function
� to this end.

Moreover, a rational buyer has concerns about data purchas-
ing budget, and different buyers have different budget settings.
Suppose the worker’s cost for collecting the data is ct at time t
(t = 1, 2, . . . , T ), and the buyer is willing to pay πt for the data.
If πt ≥ ct , then the deal can be made; otherwise, the buyer can
not have access to the data. The buyer may want to obtain the
best data possible with a fixed budget B, or obtain a number of
data that make the localization system to achieve certain level of
accuracy with least possible unfixed budget. The budget settings
are also not considered in the classic online learning technique,
and we are to deal with the issue in the latter part of the paper.

IV. QUALITY EVALUATION OF FINGERPRINTS

This section defines the localization error incurred by the
MCSed data, which is used to evaluate the quality of the finger-
prints. We are to construct loss function based on such evaluation
technique, which is to be proved to have a favored property. That
is, the expectation of loss �(h, Pt) over t achieves the minimum
when h = μ∗; therefore, we could minimize �(h, Pt) to obtain
a reasonable hypothesis of μ∗.

A. Probability Model of Data Error

Assume that the maximum location estimation error with the
IMU data is �δ, then the worker’s actual location is at any point
of the �δ neighborhood of �r as shown in left part of Fig. 1, when
the worker is claiming the submitted fingerprint is observed
at �r. The boundary of the region is �r′ = �r + �δ. We consider a
simple situation that the worker is reporting the fingerprints with
respect to a single AP; although the worker may measure the
RSS readings multiple times, only one value will be submitted to
the platform in order to save the cost for wireless network access.
Thus the submitted data follow the 1-D Gaussian distribution
according to the radio propagation model in (1), which is shown
in Fig. 1.

Suppose the worker is indeed standing at �r, the corresponding
probability density function (PDF) curve is as the dashed one in
the right part of Fig. 1. According to the principle of maximum
likelihood estimation (MLE), the reported fingerprints in this
case should fall within the range between Phigh and Plow , such
that ∀�δ,

Phigh = sup
{

P |p�r+�δ

(
P ;μ

(
�r + �δ

))
≥ p�r (P ;μ(�r))

}
,

Plow = inf
{

P |p�r+�δ

(
P ;μ

(
�r + �δ

))
≥ p�r (P ;μ(�r))

}
, (2)

where sup and inf represent the least upper bound (supremum)
and the greatest low bound (infimum), respectively; p�r and p�r+�δ
denote the probability density function (PDF) describing finger-
prints can be observed at location �r and �r + �δ respectively, with
μ(�r) and μ(�r + �δ) denote the corresponding mean values of the
PDFs.

If the worker’s actual location deviates from �r, the PDF of
corresponding reported fingerprints will deviate from the true
value of μ, as the solid curve shown in the right part of Fig. 1
with corresponding P ′

high and P ′
low . We now examine what will

occur if such inaccurate fingerprints were stored in the database
and used as if they were accurate. In the localization phase,
the user actually at �r will report the observed fingerprint with
respect to the same AP. If the reported fingerprints fall within
the range between Phigh and P ′

high , the system will still estimate
the user’s location at �r, although the information stored in the
database is inaccurate. If the reported fingerprints fall within
the range between P ′

low and Phigh , the system will make the
right choice just according to the correct information. If the
reported fingerprints fall within the range between Plow and
P ′

low , the system will estimate the user’s location at �r′, which is
the boundary condition that the inaccurate fingerprints from the
MCS incur errors in localization.

We now consider a more general case. Given a submitted fin-
gerprint P , the probability the fingerprint can incur localization
error is equal to that it falls into the range between Plow and P ′

low ,
where P ′

low is the supremum with respect to p�r ′′(·; ·). Note that
�r′′ is the true location where P is observed in p�r ′′(P ;μ(�r′′)).
Suppose that μ(�r′′) − μ(�r) = d, then the probability the sub-
mitted fingerprint can incur error is that it falls into the range
[P ′

low − d, P ′
low ]. We can define the quality of the data that is

claimed to be collected at �r by how likely the data will incur
localization error:

Ferror�r
(P ;μ(�r)) =

∣∣∣∣∣
∫ P ′

l ow

P ′
l ow −d

p�r

(
x;μ

(
�r′′

))
dx

∣∣∣∣∣ . (3)

B. Data Error Analysis

We define that ||P − μ(�r)|| = −k · ln(p(P ;μ(�r))), where k
is a positive real number. This is to quantify the distance be-
tween P and μ(�r), where −k · ln(p(P ;μ(�r))) decreases as P
approaches to μ(�r), achieves the minimum when P = μ(�r). In
Gaussian Distribution, the −k · ln(p(P ;μ(�r))) is exactly the
Euclidean distance d2. We now rewrite the probability of error
as the function of μ(r)

Err(||P − μ)||) = Ferror�r
(P, μ). (4)

It is straightforward that μ∗ should satisfy that

μ∗ = arg min
μ(�r)

E
P

(Err(||P − μ(�r))||)). (5)

The following theorem shows the rationale for our definition of
error.

Theorem 1: The expectation of the error Err(||P − μ(�r))||)
over P achieves the minimum when μ(�r) equals true value of
the fingerprints μ∗.

Proof: We use μ = μ(�r) in short. Our target is to prove that

E
P

[Err(−k · ln(p(P ;μ)))] − E
P

[Err(−k · ln(p(P ;μ∗)))] ≥ 0.
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According to the Lagrange interpolation formula, there exists ξ
satisfying

E
P

[Err(−k · ln(p(P ;μ)))] − E
P

[Err(−k · ln(p(P ;μ∗)))]

= E
P

[
−Err′(ξ)k · ln

(
p(P ;μ)
p(P ;μ∗)

)]
.

It is obvious that Err′(ξ) > 0 for the monotonicity of Err;
considering the continuity of Err, |Err′| is finite and there
exists a m > 0 satisfying that

E
P

[
−Err′(ξ)k · ln p(P ;μ)

p(P ;μ∗)

]
≥ E

P

[
−mk · ln p(P ;μ)

p(P ;μ∗)

]
.

According to Jensen’s inequality.

−mk E
P

[
ln

p(P ;μ)
p(P ;μ∗)

]
≥ −mk · ln

(
E
P

p(P ;μ)
p(P ;μ∗)

)

=−mk ·ln
(∫

P

p(P ;μ)
p(P ;μ∗)

p(P ;μ∗)dP

)

= −mk · ln1 = 0.

�
Assume that we have collected N data P1, . . . , PN from

the worker, and we let μ̂ be the value that minimizes the
1
N

∑N
i=1 Err(Pi ;μ). Theorem 1 above shows that when the

number of data we have collected is large enough, the μ̂ we
obtain from the data will approximate to the real mean value μ∗.
We will use Hoeffding inequality to show the performance of
the approximation.

Theorem 2: With probability 1 − 2e−
2ε 2

N , the difference be-
tween the expectation of the error of μ̂ obtained from collected
data and the expectation of the error of μ∗ is less than ε:

Pr

(
1
N

N∑
i=1

Err(Pi ; μ̂) − E
P

[Err(Pi ;μ∗)] ≤ ε

)
≥ 1 − 2e−

2ε 2

N .

Proof: We use Err(P ;μ) to represent Err(k · ln(p(P ;μ))).
Assume that Err(P ;μ) ∈ [m,M ], with 0 ≤ m ≤ M ≤ 1, ac-
cording to Hoeffding inequality, we have

Pr

(∣∣∣∣∣
1
N

N∑
i=1

Err(Pi ;μ) − E
P

[Err(Pi ;μ)]

∣∣∣∣∣ ≥ ε

)
≤ 2e−

2ε 2

N

for any μ. Then

Pr

(
1
N

N∑
i=1

Err(Pi ; μ̂) ≤ E
P

[Err(Pi ; μ̂)] + ε

)
≥ 1 − e−

2ε 2

N ,

Pr

(
1
N

N∑
i=1

Err(Pi ;μ∗) ≥ E
P

[Err(Pi ;μ∗)] − ε

)
≥ 1 − e−

2ε 2

N .

It is obvious that the two events are independent to each other,
thus

Pr

(
1
N

N∑
i=1

Err(Pi ; μ̂) ≤ E
P

[Err(Pi ; μ̂)] + ε,

1
N

N∑
i=1

Err(Pi ;μ∗) ≥ E
P

[Err(Pi ;μ∗)] − ε

)

≥ (1 − e−
2ε 2

N )2 ≥ 1 − 2e−
2ε 2

N . (6)

When

1
N

N∑
i=1

Err(Pi ; μ̂) ≤ −E
P

[Err(Pi ; μ̂) + ε],

1
N

N∑
i=1

Err(Pi ;μ∗) ≤ −E
P

[Err(Pi ; μ̂) − ε],

we have

0 ≤ 1
N

N∑
i=1

Err(Pi ; μ̂) ≤ −E
P

[Err(Pi ; μ̂)]

≤ 1
N

N∑
i=1

Err(Pi ; μ̂) − Err(Pi ;μ∗) + ε

≤ ε

Combining the (6), the theorem is proved. �
The result shows that when N is big enough, the μ̂ converges

to the real mean value μ∗ in probability. Given that δ is far
smaller than |�r| and that μ(�r) is continuous over �r, we may
make an approximation that for any position �r′ on the circle
centered at �r with an arbitrary radius δ,

μ(�r′) = μ(r) + ∇μ(�r)δ cos(φ), (7)

where φ is the angle between �r and ∇μ(�r) in Fig. 1.
Now we consider the thresholds of RSS value within which

the estimated location will be at �r rather than the boundary of
the circle centered at �r. According to the MLE principle [36], it
is clear that determining the location at �r requires the RSS value
fall into an interval with a higher threshold Phigh and a lower
one Plow , and this interval ensures that the RSS value of �r in it
should be higher than that at the boundary of the circle centered
at �r. Then we can derive Phigh and Plow as follows,

Phigh(μ) = μ(�r) +
∇μ(�r)δ min {cos φ, sin φ}

2
,

Plow (μ) = μ(�r) − ∇μ(�r)δ min {cos φ, sin φ}
2

. (8)

Thus we have the specific form of the error

Perror�r
(P ;μ) =

∫ Ph ig h (P )

Ph ig h (μ)

1√
2πσ

e−
(x −P ) 2

2σ 2 dx. (9)

V. QUALITY-AWARE ONLINE PRICING MECHANISM DESIGN

In this section, we present our online pricing mechanism
design, based on the the standard of data quality evaluation
presented in the previous section.
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A. Loss and Regret Function

Theorem 1 has shown that the localization error incurred
by the noisy data can be utilized to evaluate the data quality.
Note that the error function is a concave function measuring
the distance between P and μ(�r), which is quite similar to the
loss function defined in the online learning framework. In order
to determine the price for fingerprints reported sequentially,
we transform the error function into the loss function, without
changing its monotonicity and the favored property that the
function achieves the minimum in the real mean value μ∗. In
particular, the concrete form of the loss function is

�t(ht, P ) =
∫ P l ow (P )

P l ow (ht )

dP
∂

∂ht
Ferror�r

(P −ht

P ;P )
. (10)

In our model, the hypothesis ht is the parameter of the probabil-
ity distribution function of the RSS data in location �r, and Pt is
the value of measured RSS data at time point t. Considering the
convexity of the problem, we introduce online convex optimiza-
tion techniques and rewrite the loss function �t(ht, Pt) = �t(ht)
for simplicity. The regret function can be defined as

R =
T∑

t=1

�t(ht) −
T∑

t=1

�t(h∗), (11)

where h∗ is the optimal choice, causing the least loss in our
solution space H. The regret function reflects how the data
deviate from the desired value, i.e. the real mean of RSS.

The goal of online learning is to obtain the best hypothesis
when data are submitted sequentially. We here use Online Gra-
dient Descent (OGD) algorithm [34] as the learning rule for ht .
The basic idea of the OGD algorithm is to minimize the loss
of the current hypothesis, which is derived utilizing the data in
past iterations. Compared with the traditional gradient descent
method, the OGD algorithm calculates the gradient in an online
manner, where the information of the complete data set is un-
available. It has been proved that the OGD has an upper bound
of regret of O(

√
T ), which ensures that the average regret tends

to zero when T goes to infinite. With OGD, we obtain a ht in
each time point t according to

ht = ht−1 − η∇�t(ht−1). (12)

The traditional online learning technique assumes that the
buyer can access all the data submitted online. Our data pur-
chasing process collects submitted data that have high quality;
however, with the online learning framework, even if the quality
of a datum is very low, it can still provide certain information to
calibrate the hypothesis. Consequently, we need to compensate
the information loss incurred by giving up low-quality data, so
that the influence on the loss can be neutralized. In particular,
the estimation of loss is E(

∑T
t=0 δt�t) =

∑T
t=0 qt�t , where δt

is the function showing whether the data is chosen and where qt

denotes the probability that the data submitted at t is acquired
by the mechanism. However, the definition of regret in (11) still
includes all the loss at each time t whether it has been purchased
or not. In order to get an unbiased estimator of the regret, we
define

�̂t(h) =

{
�t (ht )

qt
for data chosen,

0 else.
(13)

Algorithm 1: RSS data Pricing Mechanism.
Require: a sequence of data d1, . . . , dT coming in time

1, . . . , T with each data possessing a cost ct ,
ct ∈ [0,M ]

Ensure: a final hypothesis h ∈ H
1: for t = 1, . . . , T do
2: The mechanism acquires a hypothesis ht from

OGD
3: The mechanism posts a price πt according to a

distribution Gt over [0,M ]
4: if πt ≥ ct then
5: The mechanism sends the loss function �(ht)/qt

back to the OGD and pay for the posted price πt

6: else
7: The platform rejects the price and the

mechanism sends 0 to the OGD
8: end if
9: end for

10: Return the final hypothesis h = 1
T

∑T
t=1 ht

With the unbiased estimator acquired, we can consider the mech-
anism as an OGD that recieves �̂ in each round t.

B. Quality-Aware Online Pricing Scheme

Assume that the MCSed data come in the sequence of
d1, . . . , dT , with each contains a cost c1, . . . , cT . The pricing
mechanism can determine how much the buyer should pay for
the data. However, we have no means to know either the quality
of data is good enough for localization or there will be a bet-
ter one coming in the future. We formally define our RSS data
Pricing Mechanism (RPM) in Algorithm 1.

In the algorithm, we could collect the submitted data period-
ically. Although the algorithm is oblivious to how to configure
the period, we make the system to collect the data every 10ms
when we do the experiments. Note that T is the size of the
collected data sequence, where we set T = 1000 in our exper-
iments, meaning we let the system collect 1000 data samples.
Equation (12) is a part of the OGD algorithm [34]; (13) is in-
volved in the algorithm in rows 4-6, where the data are chosen
in the first case and not chosen in the second one. Although
necessary revisions have been made to accommodate the indoor
localization application scenario, the algorithm in essence is in
the framework of the OGD algorithm, where the convergence
property has been proved [34]. Our experimental results also
show that the proposed algorithm converges in practice.

The mechanism and online learning algorithm produces a
sequence of hypothesis h1, . . . , hT . The main goal of our algo-
rithm is to get the best hypothesis h, the mean value of RSS,
from the sequence. One simple approach is to average every
hypothesis ht acquired at each time t

h =
1
T

T∑
t=1

ht. (14)

To evaluate how well our final hypothesis h approximate to the
optimal hypothesis h∗, we define the risk L(h) = 1

T

∑
t �t(h)

of a hypothesis h as the average of �t(h) over t.
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Lemma 1: The expectation of the risk of h is less than the
L(h∗) plus R/T [37], that is

E
�t

L(
h
) ≤ L(h∗) +

R

T
.

This means that if O(R(h∗)) < O(T ), then the h will ap-
proximate to the optimal hypothesis h∗ as T goes to infinite.
However, the crux of the algorithm is to find the best distribu-
tion Gt used for the mechanism to post its price.

VI. DATA PRICING WITH BUDGET CONSTRAINTS

The price distribution Gt is closely related to the budget
setting. We here consider two scenarios: First, the buyer wants
to buy the best data with a fixed budget; second, the buyer wants
to buy data with certain quality with as least budget as possible.

A. Regret Minimization With Fixed Budget

In this scenario, the buyer has a fixed budget, and the target
of the mechanism is to minimize the total regret defined in (11).
In this section, we will give the exact form of the distribution Gt

and the analysis of the regret bound according to the distribution.
1) Problem Formulation: It is well-known that the regret

bound of OGD is ||h∗||2
2η + η

∑T
t=1 ∇�t(ht)2. Substituting (14)

into the expression above, we have the regret bound of RPM as
following

R ≤ ||h∗||2
2η

+ E
�t ,qt

(
T∑

t=1

∇�t(ht)2

qt

)
. (15)

At each time point t, the RPM needs to post a price πt ac-
cording to Gt in order to get a minimum regret, we thus reduce
the problem of designing a mechanism into an optimization
problem

min
n∑

i=1

∇�i
2

1 − Gi(ci)

s.t.
n∑

i=1

∫ M

ci

xdGi(x) ≤ B, (16)

where ∀ci, 0 ≤ ci ≤ M , and G(0) = 0, G(M) = 1. Note that
the solution we need to find for the optimization problem is
the CDF Gt , which is in contrast to the traditional optimiza-
tion problems where the solutions are variables. We are to use
calculus of variations technique to solve it.

Theorem 3: The optimal solution of the optimization prob-
lem (18) is in the form of

Gt(c) =

{
1 − ∇�t√

λc−β
c ∈ (∇�2

t +β
λ

,M ];

0 else.
(17)

Proof: We first give our function space V = {y|y(0) =
0, y(M) = 1}, and we denote our cost function as

M(G1, . . . , GT ) =
T∑

t=1

∇�i
2

1 − Gt(ct)
.

Then the augmented Lagrange function is derived as

J(G1, . . . , GT , λ) = M(G1, . . . , GT )

+ λ

(
T∑

t=1

∫ M

ct

xdGt(x) − B

)
.

According to the Gateaux Derivative, we obtain that ∀Ĝ ∈ V ,

δJ |Gt

(
Ĝt − Gt

)
=

∫ M

ct

(
− ∇�i

2

(1 − Gt(ct))2
+ λx

)

× d
(
Ĝt(x) − Gt(x)

)
,

and if Gt is the local minimum, then we have δJ(Ĝt − Gt) ≥ 0.

Note that
∫ M

0
ˆd(Gt(x) − Gt(x)) = 0 and the arbitrariness of

Ĝt , we must have

− ∇�i
2

(1 − Gt(ct))2
+ λx = β ≥ 0

hold for any x on [ct ,M ], thus proved. �
The major challenge now is to determine β and λ. Notice

that G(x) is not continuous, using the Stieltjes Integral, we can
rewrite the constraint as following

T∑
t=1

∫ M

ct

xdGt(x)=
T∑

t=1

(∫ M

ct

xG′
t(x)dx + (1 − Gi(M))M

)

≤
T∑

t=1

∇�t

(
2
λ

√
λM − β +

ct√
λct − β

− 2
λ

√
λct − β

)
≤ B. (18)

The Stieltjes Integral here has its practical significance, because
we assume that the cost lies between [0,M ], in other word, the
mechanism does not accept any price higher than M , thus for
any posted price c that is higher than M , the mechanism will
only pay M instead of c.

Now since we get the solution of the Gt , the remaining is to
determine the parameters λ and β. Recall our initial optimization
problem of minimizing the regret bound. The Lagrangian is thus
given as follows

L(μ, β, λ) =
∑

t

(
∇�t

(√
λct − β + μ

(
2
λ

√
λM − β

+
ct√

λct − β
− 2

λ

√
λct − β

)))
− μB. (19)
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and its gradient is obtained accordingly.

∂L

∂λ
=

∑
t

∇�t

((ct

2
− μ

λ

) 1√
λct − β

+
μ

λ

1√
λM − β

− 1
2

c2
t μ√

(λct − β)3

)

∂L

∂β
=

∑
t

∇�t

((
μ

λ
− 1

2

)
1√

λct − β
− μ

λ

1√
λM − β

− μ

2
ct√

(λct − β)3

)

∂L

∂μ
=

∑
t

∇�t

(
2
λ

√
λM − β +

ct√
λct − β

− 2
λ

√
(λct − β)

)
− B (20)

According to the complementary slackness theorem, μ = 0,
which means that the constraint condition in (16) for the op-
timal solution is strict. An intuitive explanation of this property
is that the mechanism should use up the budget to get the op-
timal data. It is infeasible to work out the analytic solution of
the optimal value of β and λ due to the complex form of the
equation itself and the fact that we do not have access to enough
prior knowledge of ct and ∇�t .

We here give the iterative update of these two parameters.
We initially set β to a fixed value and λ to a very small value,
e.g., 0.01. Then at each time point t, we update the value of λ(t)

iteratively according to

λ(t) =
T 2

B2M

(
t−1∑
i=1

∇�i(ht)
t − 1

√
ct

)2

+
β

M
(21)

The above iteration formula is straightforwardly derived from
the constraint (18).

2) Regret Analysis: When the parameter β and λ is fixed,
a higher ∇�t means a higher probability that a data will be
purchased, which is in accordance with the definition of the
gradient, the fastest direction that the current ht descends to the
ideal one. For the parameter λ, a smaller λ means that the mech-
anism would tend to pay a high price for the data. The parameter
β can be seen as the most dominant factor that determines the
minimum price that the mechanism would pay.

Generally, a more sufficient budget B would lead to a higher
β and smaller λ. When budget B goes to infinite, the λ and β
goes to zero, leading to a CDF of G(M) = 1. That is, when the
budget is unlimited, the mechanism will try to purchase the data
as many as possible. For a fixed β, we give the estimation of the
upper bound of the regret of RPM in theorem 4.

Theorem 4: For a fixed β, the regret of RPM is bounded with

R < O

(
max

{√
T ,

Tθ√
B

√
1 − βB2

Tθ2M

})
, (22)

where θ = E 1
T

∑
t ∇�t(2

√
M −√

ct).
Proof: We prove the theorem by firstly setting the β0 = 0,

and through simple calculation, we can have an estimation of
λ0 = T 2

B 2 θ
2. Since that ∂L/∂β > 0, ∂L/∂λ > 0 hold in β0 and

λ0, we obtain that the optimal solution (β∗, λ∗) statisfy that
β∗ > β0, λ∗ > λ0. Considering the discontinuity of the Gt , we

introduce C = {qt |ct < ∇�2
t

β }. It is obvious that all the elements
in C equals to 1. We substitue λ0 and β into the estimation of
the regret bound given in (15)

R ≤ ||h∗||2
2η

+ η E

(∑
t∈C

∇�t(ht)2 +
∑
t /∈C

∇�t(ht)2

qt

)

≤ ||h∗||2
2η

+ η

(
Te + E

∑
t /∈C

∇�tct

√
T 2θ2

B2
− β

)

≤ ||h∗||2
2η

+ η

(
Te +

T 2θ2

B

√
1 − βB2

T 2θ2M

)

< O

(
max

{√
T ,

Tθ√
B

√
1 − βB2

Tθ2M

})
,

and thus acquire the desired result. �

B. Budget Minimization for Certain Quality Level

This section considers the scenario where the purpose of the
mechanism is to achieve a given error between L(h) and L(h∗).
We design another mechanism to pursue a minimum expectation
of the money the buyer will pay to achieve the given bound of
error. Recall that the difference betweeen the L(h) and L(h∗) is
at most the average regret bound R0 = R(h∗)/T . We thus only
need to consider the constraint on the average bound of regret
which makes the problem feasible.

However, we also encounter the challenge that the objec-
tive function of this situation is formed as an integral, which
is not a simple task to be resolved with classical optimization
methods. Unlike the method we used in Theorem 3, in this
case, the constraint of the problem that 1

T

∑
t
∇�2

t

qt
≤ R0 is of a

relatively simple form and we observe that the expectation of
cost can be approximated by

∑
t qtct . Thus we first consider

a relatively simple version of the problem with objective func-
tion minqt

∑
t ctqt , where qt ∈ [0, 1] is the probability of the

mechanism to perchase the data in round t. Then we generalize
the form between qt and ct to obtain the form of CDF for our
original problem.

Theorem 5: The optimal qt for the minimum
∑

t ctqt in the
budget minimization scenario is in the form of:

qt = min

{
1,

√
λ

ct
∇�t

}
, (23)

Proof: Considering that the objective function is convex, we
can derive the corresponding Lagrangian function

L =
∑

t

ctqt − λ

(
−

∑
t

∇�2
t

qt
+ R0T

)
−

∑
t

μt(1 − qt).

(24)

The optimal K-T condition of the problem is

∂L

∂qt
= ct − λ

[∇�2
t

q2
t

]
+ μt = 0. (25)
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Fig. 2. Experiment location.

In light of complementary slackness, it is clear that when qt = 1,
we get μt = 0 and when qt = 1, we get μt = 0. Thus based on
(25), prove the theorem.

Since (23) holds for any ct , and the cost ct in our model is
arbitrarily given, we may make a generalization of the relation
between qt and ct , that is, for any c ∈ (λ∇�2

t ,M ], the proba-

bility of the data to be acquired is
√

λ
c ∇�t . Thus the cumulative

distribution function of the budget saving pricing mechanism is
of the form

Gt(c) =

{
1 −

√
λ
c ∇�t c ∈ (λ∇�2

t ,M ],

0 else.
(26)

Similar to the problem in (16), it is difficult for the mech-
anism to determine the parameter λ in each round t without
prior knowledge of ∇ft and ct . According to our constraint on
regret and that the optimal condition in (25), λ can not equal
zero, we can get an approximation of the

√
λ(t) through simple

calculations
√

λ(t) =
∑

t

√
ct∇�t

R0T
. (27)

After acquiring the form of the Gt , we can now make a relatively
more precise estimation of the budget B

E(B) =
∑

t

∫ M

ct

dGt(c) =
T 2

R0
θφ, (28)

where φ =
∑

t
1
T ∇ft(

√
M −√

ct) and θ =
∑

t
1
T ∇ft

√
ct .

VII. EXPERIMENTAL RESULTS

We conduct experiments to validate our analysis. First, we set
up a Wi-Fi transmitter in the indoor space and the devices held
by volunteers automatically report the observed RSS values to
the server when they reach into the range of Wi-Fi as shown in
Fig. 2. Empirically, we set the ∇μ(�r) = 1 and η = 1/

√
2T to

minimize the regret bound through experiments.
We sample 1000 RSS values at each location �r and simulate

costs of data through a normal distribution with mean value of
0.5 and variance of 1, and the maximum of the cost is bounded
by M = 1. We first evaluate the impact of the parameter choice
on our mechanism. We run the RPM with fixed budget B = 100,
range λ from 10 to 100 and β from 0 to 100. We use the risk of
the final hypothesis h, L(h) defined in Lemma 1 to measure the

Fig. 3. Risk-β-λ.

Fig. 4. Risk-budget on differnent sequences. (a) Low var. sequence. (b) High
var. sequence.

performance of the mechanism. For each λ and β, we make 100
repeated trails and take the average of the results to diminish the
stochastic error. The results shown in Fig. 3 indicate that for each
λ, there exists a best β that achieves the minimum risk. If the
value of β goes greater and that of λ decreases, the performance
result of the mechanism tends to be that of the naive mechanism,
which is to purchase as many as data with all budget at disposal.
This is in accordance with our analysis in Section VI-A.

We also compare our proposed mechanism RPM with the
take-it-or-leave-it (TIOLI) mechanism in [8], [9]. The TIOLI is
an incentive model for encouraging participation in the survey,
where the value of the private information the subject provides
is closely related to the accuracy of the information. Since the
subject is always trying to protect their privacy, the provided
information’s quality varies; however, the TIOLI scheme can
guarantee that if the subject provides inaccurate information,
then the corresponding reward to the subject is very small. The
quality awareness in TIOLI is very similar with the RPM scheme
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Fig. 5. Predictive RSS values on differnent sequences. (a) Low var. sequence.
(b) High var. sequence.

proposed in this paper. Nevertheless, TIOLI must be applied in
verifiable scenarios, where the ground truth is available; more-
over, TIOLI processes data in batch instead of online as the
RPM scheme in this paper. We choose TIOLI as one of the
benchmarks because it can buy the most accurate data with the
lowest cost. Although the in-batch processing and the verifiable
scenario assumption in TIOLI may lead to its advantageous per-
formance, if the proposed RMP can present performance close
to TIOLI without those favored processing pattern and assump-
tion, then we can say the RMP has an outstanding performance.

We utilize the samples in the database to evaluate the 3 kinds
of mechanisms: the naive method, the TIOLI method, proposed
RPM with β = 0. With the naive method, the mechanism ran-
domly purchases data in an online manner with maximum cost
M until the budget is consumed up. With the RPM method, we
fix β and adjust λ iteratively according to (21), and use the risk
L(h) to judge the quality of our final hypothesis. We run each
algorithm 100 times and present the average of the results.

The value of RSS fingerprints may vary due to the noise in the
indoor environment, which could be even worsened by slightly
shaking the sensing devices or blockage of other people. In order
to make a reasonable assessment on the mechanism, we analyze
collected RSS fingerprint sequences according to how they vary
in amplitude. We select two kinds of sequences to conduct the
following experiments, where the first kind is the sequence with
high variation and the second is with low variation.

We first examine the risk of final hypothesis output by differ-
ent mechanisms with different budget limits, where the results
are shown in Fig. 4. It is apparent that the curves of all those
mechanisms gradually converge as budget mounts, verifying the

Fig. 6. Budget-risk on differnent sequences. (a) Low var. sequence. (b) High
var. sequence.

online-to-batch conversion we mentioned before. It can be seen
that the final risk of RPM outperforms naive method in a large
amount while the budget limit is at a median level (100-600 ap-
proximately). The difference between RPM and naive method
is getting smaller as the budget is increasing. It demonstrates
that while the budget is insufficient, RPM works much better
than the naive method. There is a remarkable fact that RPM
makes prediction according to the data sample received in each
round, while TIOLI could obtain all the information from data
sequence. The results demonstrate that the performance of RPM
catches up with that of TIOLI, indicating RPM is an effective
algorithm under the online learning framework.

We then conduct experiments to estimate the mean value
of RSS distribution with different budget limits. According to
Theorem 1, we approximate the true value of fingerprint by
averaging reported data sequence with large amount of RSS
samples, and compare it with the prediction generated by dif-
ferent mechanisms. As shown in Fig. 5, the difference between
RPM and TIOLI is very small and both of them can predict RSS
closely to the true value even though the budget is very low,
while naive method predicts well only if the budget is relatively
high (800 or more). Considering the variation factor on differ-
ent sequences, our RPM shows its robustness during the data
procurement process, while naive method may generate wrong
prediction trend in high-variance data sequence.

We also consider the derivative problem about minimizing
the budget with given risk. We compare the least needed budget
output by different mechanisms when the risk is required at
different levels. The experimental results evince that once the
risk is fixed, the budget required by RPM and TIOLI are close
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Fig. 7. Cumulative distribution function of error. (a) Budget = 200. (b) Budget
= 600.

to each other and less than naive method, indicating that RPM
can save much more money to reach a certain risk threshold, as
shown in Fig. 6. The gap becomes larger when the variation is
relatively high, indicating the stability of RPM in crowdsensing
based data collection process.

Moreover, we perform measurements on the mean value of
RSS fingerprints at different locations. Volunteers randomly
walk around the test region to collect data sequences at 100
different locations. The predictive error is defined as the differ-
ence between true value and the predicted value generated by
mechanisms. We evaluate different mechanisms by their statis-
tical distribution, which is shown in Fig. 7. Although our RPM
method has no prior knowledge about the collected data se-
quence, it still makes accurate estimations on the mean value
and achieves a comparative error rate with TIOLI. In practice,
the whole fingerprint data set is not always available in advance,
and the prediction may vary with the characteristics of arriving
data, our online learning based mechanism definitely shows su-
periority in such practical scenarios. It is also observed that the
difference between naive method and RPM is large with low
budget(B = 200) and gets smaller when the budget is getting
higher(B = 600), verifying the effectiveness of our proposed
mechanism when the budget is not ample.

VIII. CONCLUSION

In this paper, we have presented a data pricing scheme ded-
icated to MCSed fingerprints by enhancing the online learning
technique. We have revealed the principle of fingerprints quality
assessment for accurate localization. Based on the principle, we

have designed corresponding loss and regret function, which is
able to reflect values of the fingerprints with respect to local-
ization accuracy. We have presented an online pricing scheme
for MCSed data, which results in that the worker’s payoff is a
random variable following an optimal probability density func-
tion (PDF) leading to the minimum expected regret. Further, we
have extended our scheme to application scenarios with different
budget settings, where the pricing strategies for the scenarios of
regret minimization with fixed budget and budget minimization
for certain fingerprints quality level have been investigated. Ex-
perimental results have been presented to verify our theoretical
analysis.
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